View datasets-UCI breast-cancer (public)
























- Summary
(No information yet)
- License
- unknown (from Weka repository)
- Dependencies
- Tags
- arff slurped Weka
- Attribute Types
- String
- Download
-
# Instances: 286 / # Attributes: 10
HDF5 (137.8 KB) XML CSV ARFF LibSVM Matlab OctaveFiles are converted on demand and the process can take up to a minute. Please wait until download begins.
You can edit this item to add more meta information and make use of the site's premium features.
- Original Data Format
- arff
- Name
- breast-cancer
- Version mldata
- 0
- Comment
Citation Request: This breast cancer domain was obtained from the University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. Thanks go to M. Zwitter and M. Soklic for providing the data. Please include this citation if you plan to use this database.
Title: Breast cancer data (Michalski has used this)
Sources: -- Matjaz Zwitter & Milan Soklic (physicians) Institute of Oncology University Medical Center Ljubljana, Yugoslavia -- Donors: Ming Tan and Jeff Schlimmer (Jeffrey.Schlimmer@a.gp.cs.cmu.edu) -- Date: 11 July 1988
Past Usage: (Several: here are some) -- Michalski,R.S., Mozetic,I., Hong,J., & Lavrac,N. (1986). The Multi-Purpose Incremental Learning System AQ15 and its Testing Application to Three Medical Domains. In Proceedings of the Fifth National Conference on Artificial Intelligence, 1041-1045, Philadelphia, PA: Morgan Kaufmann. -- accuracy range: 66%-72% -- Clark,P. & Niblett,T. (1987). Induction in Noisy Domains. In Progress in Machine Learning (from the Proceedings of the 2nd European Working Session on Learning), 11-30, Bled, Yugoslavia: Sigma Press. -- 8 test results given: 65%-72% accuracy range -- Tan, M., & Eshelman, L. (1988). Using weighted networks to represent classification knowledge in noisy domains. Proceedings of the Fifth International Conference on Machine Learning, 121-134, Ann Arbor, MI. -- 4 systems tested: accuracy range was 68%-73.5% -- Cestnik,G., Konenenko,I, & Bratko,I. (1987). Assistant-86: A Knowledge-Elicitation Tool for Sophisticated Users. In I.Bratko & N.Lavrac (Eds.) Progress in Machine Learning, 31-45, Sigma Press. -- Assistant-86: 78% accuracy
Relevant Information: This is one of three domains provided by the Oncology Institute that has repeatedly appeared in the machine learning literature. (See also lymphography and primary-tumor.)
This data set includes 201 instances of one class and 85 instances of another class. The instances are described by 9 attributes, some of which are linear and some are nominal.
Number of Instances: 286
Number of Attributes: 9 + the class attribute
Attribute Information:
Class: no-recurrence-events, recurrence-events
age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99.
menopause: lt40, ge40, premeno.
tumor-size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59.
inv-nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-39.
node-caps: yes, no.
deg-malig: 1, 2, 3.
breast: left, right.
breast-quad: left-up, left-low, right-up, right-low, central.
irradiat: yes, no.
Missing Attribute Values: (denoted by "?") Attribute #: Number of instances with missing values:
8
1.
Class Distribution:
- no-recurrence-events: 201 instances
- recurrence-events: 85 instances
Num Instances: 286 Num Attributes: 10 Num Continuous: 0 (Int 0 / Real 0) Num Discrete: 10 Missing values: 9 / 0.3%
name type enum ints real missing distinct (1)
1 'age' Enum 100% 0% 0% 0 / 0% 6 / 2% 0% 2 'menopause' Enum 100% 0% 0% 0 / 0% 3 / 1% 0% 3 'tumor-size' Enum 100% 0% 0% 0 / 0% 11 / 4% 0% 4 'inv-nodes' Enum 100% 0% 0% 0 / 0% 7 / 2% 0% 5 'node-caps' Enum 97% 0% 0% 8 / 3% 2 / 1% 0% 6 'deg-malig' Enum 100% 0% 0% 0 / 0% 3 / 1% 0% 7 'breast' Enum 100% 0% 0% 0 / 0% 2 / 1% 0% 8 'breast-quad' Enum 100% 0% 0% 1 / 0% 5 / 2% 0% 9 'irradiat' Enum 100% 0% 0% 0 / 0% 2 / 1% 0% 10 'Class' Enum 100% 0% 0% 0 / 0% 2 / 1% 0%
- Names
- age,menopause,tumor-size,inv-nodes,node-caps,deg-malig,breast,breast-quad,irradiat,Class,
- Types
- nominal:'10-19','20-29','30-39','40-49','50-59','60-69','70-79','80-89','90-99'
- nominal:'lt40','ge40','premeno'
- nominal:'0-4','5-9','10-14','15-19','20-24','25-29','30-34','35-39','40-44','45-49','50-54','55-59'
- nominal:'0-2','3-5','6-8','9-11','12-14','15-17','18-20','21-23','24-26','27-29','30-32','33-35','36-39'
- nominal:'yes','no'
- nominal:'1','2','3'
- nominal:'left','right'
- nominal:'left_up','left_low','right_up','right_low','central'
- nominal:'yes','no'
- nominal:'no-recurrence-events','recurrence-events'
- Data (first 10 data points)
age meno... tumo... inv-... node... deg-... breast brea... irra... Class '40-... 'pre... '15-... '0-2' 'yes' '3' 'rig... 'lef... 'no' 'rec... '50-... 'ge40' '15-... '0-2' 'no' '1' 'rig... 'cen... 'no' 'no-... '50-... 'ge40' '35-... '0-2' 'no' '2' 'left' 'lef... 'no' 'rec... '40-... 'pre... '35-... '0-2' 'yes' '3' 'rig... 'lef... 'yes' 'no-... '40-... 'pre... '30-... '3-5' 'yes' '2' 'left' 'rig... 'no' 'rec... '50-... 'pre... '25-... '3-5' 'no' '2' 'rig... 'lef... 'yes' 'no-... '50-... 'ge40' '40-... '0-2' 'no' '3' 'left' 'lef... 'no' 'no-... '40-... 'pre... '10-... '0-2' 'no' '2' 'left' 'lef... 'no' 'no-... '40-... 'pre... '0-4' '0-2' 'no' '2' 'rig... 'rig... 'no' 'no-... '40-... 'ge40' '40-... '15-... 'yes' '2' 'rig... 'lef... 'yes' 'no-... ... ... ... ... ... ... ... ... ... ...
- Description
A jarfile containing 37 classification problems, originally obtained from the UCI repository (datasets-UCI.jar, 1,190,961 Bytes).
- URLs
- (No information yet)
- Publications
- Data Source
- http://www.ics.uci.edu/~mlearn/MLRepository.html
- Measurement Details
- Usage Scenario
- revision 1
- by mldata on 2010-11-06 09:57
No one has posted any comments yet. Perhaps you would like to be the first?
Leave a comment
To post a comment, please sign in.This item was downloaded 9753 times and viewed 16039 times.
No Tasks yet on dataset datasets-UCI breast-cancer
Submit a new Task for this Data itemDisclaimer
We are acting in good faith to make datasets submitted for the use of the scientific community available to everybody, but if you are a copyright holder and would like us to remove a dataset please inform us and we will do it as soon as possible.
Acknowledgements
This project is supported by PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning)
http://www.pascal-network.org/.