View uci-20070111 kr-vs-kp (public)

2011-09-14 15:35 by mldata | Version 1 | Rating Empty StarEmpty StarEmpty StarEmpty StarEmpty StarEmpty Star
Rating
Empty StarEmpty StarEmpty StarEmpty StarEmpty StarEmpty Star Overall (based on 0 votes)
Empty StarEmpty StarEmpty StarEmpty StarEmpty StarEmpty Star Interesting
Empty StarEmpty StarEmpty StarEmpty StarEmpty StarEmpty Star Documentation
Summary

(No information yet)

License
unknown (from Weka repository)
Dependencies
Tags
arff slurped Weka
Attribute Types
String
Download
# Instances: 3196 / # Attributes: 37
HDF5 (4.5 MB) XML CSV ARFF LibSVM Matlab Octave

Files are converted on demand and the process can take up to a minute. Please wait until download begins.

Completeness of this item currently: 55%.
You can edit this item to add more meta information and make use of the site's premium features.
Original Data Format
arff
Name
kr-vs-kp
Version mldata
0
Comment
  1. Title: Chess End-Game -- King+Rook versus King+Pawn on a7 (usually abbreviated KRKPA7). The pawn on a7 means it is one square away from queening. It is the King+Rook's side (white) to move.

  2. Sources: (a) Database originally generated and described by Alen Shapiro. (b) Donor/Coder: Rob Holte (holte@uottawa.bitnet). The database was supplied to Holte by Peter Clark of the Turing Institute in Glasgow (pete@turing.ac.uk). (c) Date: 1 August 1989

  3. Past Usage:

    • Alen D. Shapiro (1983,1987), "Structured Induction in Expert Systems", Addison-Wesley. This book is based on Shapiro's Ph.D. thesis (1983) at the University of Edinburgh entitled "The Role of Structured Induction in Expert Systems".
    • Stephen Muggleton (1987), "Structuring Knowledge by Asking Questions", pp.218-229 in "Progress in Machine Learning", edited by I. Bratko and Nada Lavrac, Sigma Press, Wilmslow, England SK9 5BB.
    • Robert C. Holte, Liane Acker, and Bruce W. Porter (1989), "Concept Learning and the Problem of Small Disjuncts", Proceedings of IJCAI. Also available as technical report AI89-106, Computer Sciences Department, University of Texas at Austin, Austin, Texas 78712.
  4. Relevant Information: The dataset format is described below. Note: the format of this database was modified on 2/26/90 to conform with the format of all the other databases in the UCI repository of machine learning databases.

  5. Number of Instances: 3196 total

  6. Number of Attributes: 36

  7. Attribute Summaries: Classes (2): -- White-can-win ("won") and White-cannot-win ("nowin"). I believe that White is deemed to be unable to win if the Black pawn can safely advance. Attributes: see Shapiro's book.

  8. Missing Attributes: -- none

  9. Class Distribution: In 1669 of the positions (52%), White can win. In 1527 of the positions (48%), White cannot win.

The format for instances in this database is a sequence of 37 attribute values. Each instance is a board-descriptions for this chess endgame. The first 36 attributes describe the board. The last (37th) attribute is the classification: "win" or "nowin". There are 0 missing values. A typical board-description is

f,f,f,f,f,f,f,f,f,f,f,f,l,f,n,f,f,t,f,f,f,f,f,f,f,t,f,f,f,f,f,f,f,t,t,n,won

The names of the features do not appear in the board-descriptions. Instead, each feature correponds to a particular position in the feature-value list. For example, the head of this list is the value for the feature "bkblk". The following is the list of features, in the order in which their values appear in the feature-value list:

[bkblk,bknwy,bkon8,bkona,bkspr,bkxbq,bkxcr,bkxwp,blxwp,bxqsq,cntxt,dsopp,dwipd, hdchk,katri,mulch,qxmsq,r2ar8,reskd,reskr,rimmx,rkxwp,rxmsq,simpl,skach,skewr, skrxp,spcop,stlmt,thrsk,wkcti,wkna8,wknck,wkovl,wkpos,wtoeg]

In the file, there is one instance (board position) per line.

Num Instances: 3196 Num Attributes: 37 Num Continuous: 0 (Int 0 / Real 0) Num Discrete: 37 Missing values: 0 / 0.0%

name                      type enum ints real     missing    distinct  (1)

1 'bkblk' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 2 'bknwy' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 3 'bkon8' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 4 'bkona' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 5 'bkspr' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 6 'bkxbq' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 7 'bkxcr' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 8 'bkxwp' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 9 'blxwp' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 10 'bxqsq' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 11 'cntxt' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 12 'dsopp' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 13 'dwipd' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 14 'hdchk' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 15 'katri' Enum 100% 0% 0% 0 / 0% 3 / 0% 0% 16 'mulch' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 17 'qxmsq' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 18 'r2ar8' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 19 'reskd' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 20 'reskr' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 21 'rimmx' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 22 'rkxwp' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 23 'rxmsq' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 24 'simpl' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 25 'skach' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 26 'skewr' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 27 'skrxp' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 28 'spcop' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 29 'stlmt' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 30 'thrsk' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 31 'wkcti' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 32 'wkna8' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 33 'wknck' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 34 'wkovl' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 35 'wkpos' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 36 'wtoeg' Enum 100% 0% 0% 0 / 0% 2 / 0% 0% 37 'class' Enum 100% 0% 0% 0 / 0% 2 / 0% 0%

Names
bkblk,bknwy,bkon8,bkona,bkspr,bkxbq,bkxcr,bkxwp,blxwp,bxqsq,
Types
  1. nominal:'t','f'
  2. nominal:'t','f'
  3. nominal:'t','f'
  4. nominal:'t','f'
  5. nominal:'t','f'
  6. nominal:'t','f'
  7. nominal:'t','f'
  8. nominal:'t','f'
  9. nominal:'t','f'
  10. nominal:'t','f'
Data (first 10 data points)
    bkblk bknwy bkon8 bkona bkspr bkxbq bkxcr bkxwp blxwp bxqsq ...
    'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' ...
    'f' 'f' 'f' 'f' 't' 'f' 'f' 'f' 'f' 'f' ...
    'f' 'f' 'f' 'f' 't' 'f' 't' 'f' 'f' 'f' ...
    'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 't' 'f' ...
    'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' ...
    'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' ...
    'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 't' 'f' ...
    'f' 'f' 'f' 'f' 't' 'f' 'f' 'f' 'f' 'f' ...
    'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' ...
    'f' 'f' 'f' 'f' 'f' 'f' 't' 'f' 'f' 'f' ...
    ... ... ... ... ... ... ... ... ... ... ...
Description

A gzip'ed tar containing UCI and UCI KDD datasets (uci-20070111.tar.gz, 17,952,832 Bytes)

URLs
(No information yet)
Publications
    Data Source
    http://www.ics.uci.edu/~mlearn/MLRepository.html http://kdd.ics.uci.edu/
    Measurement Details
    Usage Scenario
    revision 1
    by mldata on 2011-09-14 15:35

    No one has posted any comments yet. Perhaps you would like to be the first?

    Leave a comment

    To post a comment, please sign in.

    This item was downloaded 4321 times and viewed 2039 times.

    No Tasks yet on dataset uci-20070111 kr-vs-kp

    Submit a new Task for this Data item

    Data

    Sort by

    Disclaimer

    We are acting in good faith to make datasets submitted for the use of the scientific community available to everybody, but if you are a copyright holder and would like us to remove a dataset please inform us and we will do it as soon as possible.

    Data | Task | Method | Challenge

    Acknowledgements

    This project is supported by PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning)
    PASCAL Logo
    http://www.pascal-network.org/.