View uci-20070111 mv (public)

2010-11-06 09:59 by mldata | Version 1 | Rating Empty StarEmpty StarEmpty StarEmpty StarEmpty StarEmpty Star
Rating
Empty StarEmpty StarEmpty StarEmpty StarEmpty StarEmpty Star Overall (based on 0 votes)
Empty StarEmpty StarEmpty StarEmpty StarEmpty StarEmpty Star Interesting
Empty StarEmpty StarEmpty StarEmpty StarEmpty StarEmpty Star Documentation
Summary

(No information yet)

License
unknown (from Weka repository)
Dependencies
Tags
arff slurped Weka
Attribute Types
Integer,Floating Point,String
Download
# Instances: 40768 / # Attributes: 11
HDF5 (7.0 MB) XML CSV ARFF LibSVM Matlab Octave

Files are converted on demand and the process can take up to a minute. Please wait until download begins.

Completeness of this item currently: 55%.
You can edit this item to add more meta information and make use of the site's premium features.
Original Data Format
arff
Name
mv
Version mldata
0
Comment

This is an artificial data set with dependencies between the attribute values. The cases are generated using the following method:

X1 : uniformly distributed over [-5,5] X2 : uniformly distributed over [-15,-10] X3 : IF (X1 > 0) THEN X3 = green ELSE X3 = red with probability 0.4 and X4=brown with prob. 0.6 X4 : IF (X3=green) THEN X4=X1+2X2 ELSE X4=X1/2 with prob. 0.3, and X4=X2/2 with prob. 0.7 X5 : uniformly distributed over [-1,1] X6 : X6=X4*[epsilon], where [epsilon] is uniformly distribute over [0,5] X7 : X7=yes with prob. 0.3 and X7=no with prob. 0.7 X8 : IF (X5 < 0.5) THEN X8 = normal ELSE X8 = large X9 : uniformly distributed over [100,500] X10 : uniformly distributed integer over the interval [1000,1200]

Obtain the value of the target variable Y using the rules: IF (X2 > 2 ) THEN Y = 35 - 0.5 X4 ELSE IF (-2 <= X4 <= 2) THEN Y = 10 - 2 X1 ELSE IF (X7 = yes) THEN Y = 3 -X1/X4 ELSE IF (X8 = normal) THEN Y = X6 + X1 ELSE Y = X1/2

Source: collection of regression datasets by Luis Torgo (ltorgo@ncc.up.pt) at http://www.ncc.up.pt/~ltorgo/Regression/DataSets.html Characteristics: 40768 cases, 11 attributes (3 nominal, 8 continuous).

Names
x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,
Types
  1. numeric
  2. numeric
  3. nominal:brown,red,green
  4. numeric
  5. numeric
  6. numeric
  7. nominal:no,yes
  8. nominal:normal,large
  9. numeric
  10. numeric
Data (first 10 data points)
    x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ...
    3.50... -13.1... brown -6.55... 0.01... -17.3... no normal 153.... 1026 ...
    0.25... -10.0... brown -5.02... -0.15... -3.72... no normal 191.... 1126 ...
    -1.72... -10.0... red -5.04... 0.68... -19.7... no large 256.... 1091 ...
    -4.94... -13.7... brown -6.89... -0.09... -2.17... yes normal 165.52 1039 ...
    -2.12... -11.5... brown -5.77... -0.66... -15.3... no normal 311.... 1152 ...
    0.30... -10.7... green -5.36... -0.65... -15.85 no normal 419.... 1197 ...
    3.94... -10.9... red -5.48... 0.69... -4.88... no large 101.... 1068 ...
    1.1662 -13.5... red -6.77... 0.56... -32.7... no large 374.... 1099 ...
    1.92... -13.9... brown -6.96... -0.98... -21.1... no normal 280.... 1081 ...
    0.38... -13.2... red 0.19... 0.13... 0.59... yes normal 495.... 1123 ...
    ... ... ... ... ... ... ... ... ... ... ...
Description

A gzip'ed tar containing UCI and UCI KDD datasets (uci-20070111.tar.gz, 17,952,832 Bytes)

URLs
(No information yet)
Publications
    Data Source
    http://www.ics.uci.edu/~mlearn/MLRepository.html http://kdd.ics.uci.edu/
    Measurement Details
    Usage Scenario
    revision 1
    by mldata on 2010-11-06 09:59

    No one has posted any comments yet. Perhaps you would like to be the first?

    Leave a comment

    To post a comment, please sign in.

    This item was downloaded 4196 times and viewed 2026 times.

    No Tasks yet on dataset uci-20070111 mv

    Submit a new Task for this Data item

    Data

    Sort by

    Disclaimer

    We are acting in good faith to make datasets submitted for the use of the scientific community available to everybody, but if you are a copyright holder and would like us to remove a dataset please inform us and we will do it as soon as possible.

    Data | Task | Method | Challenge

    Acknowledgements

    This project is supported by PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning)
    PASCAL Logo
    http://www.pascal-network.org/.