You are here: Home / Repository / Data / View / datasets-numeric cleveland
View datasets-numeric cleveland (public)
























- Summary
(No information yet)
- License
- unknown (from Weka repository)
- Dependencies
- Tags
- arff slurped Weka
- Attribute Types
- Integer,Floating Point
- Download
-
# Instances: 303 / # Attributes: 14
HDF5 (38.7 KB) XML CSV ARFF LibSVM Matlab OctaveFiles are converted on demand and the process can take up to a minute. Please wait until download begins.
You can edit this item to add more meta information and make use of the site's premium features.
- Original Data Format
- arff
- Name
- 'cleveland'
- Version mldata
- 0
- Comment
Publication Request: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> This file describes the contents of the heart-disease directory.
This directory contains 4 databases concerning heart disease diagnosis. All attributes are numeric-valued. The data was collected from the four following locations:
1. Cleveland Clinic Foundation (cleveland.data) 2. Hungarian Institute of Cardiology, Budapest (hungarian.data) 3. V.A. Medical Center, Long Beach, CA (long-beach-va.data) 4. University Hospital, Zurich, Switzerland (switzerland.data)
Each database has the same instance format. While the databases have 76 raw attributes, only 14 of them are actually used. Thus I've taken the liberty of making 2 copies of each database: one with all the attributes and 1 with the 14 attributes actually used in past experiments.
The authors of the databases have requested:
...that any publications resulting from the use of the data include the names of the principal investigator responsible for the data collection at each institution. They would be: 1. Hungarian Institute of Cardiology. Budapest: Andras Janosi, M.D. 2. University Hospital, Zurich, Switzerland: William Steinbrunn, M.D. 3. University Hospital, Basel, Switzerland: Matthias Pfisterer, M.D. 4. V.A. Medical Center, Long Beach and Cleveland Clinic Foundation: Robert Detrano, M.D., Ph.D.
Thanks in advance for abiding by this request.
David Aha July 22, 1988 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Title: Heart Disease Databases
Source Information: (a) Creators: -- 1. Hungarian Institute of Cardiology. Budapest: Andras Janosi, M.D. -- 2. University Hospital, Zurich, Switzerland: William Steinbrunn, M.D. -- 3. University Hospital, Basel, Switzerland: Matthias Pfisterer, M.D. -- 4. V.A. Medical Center, Long Beach and Cleveland Clinic Foundation: Robert Detrano, M.D., Ph.D. (b) Donor: David W. Aha (aha@ics.uci.edu) (714) 856-8779
(c) Date: July, 1988Past Usage:
Detrano,~R., Janosi,~A., Steinbrunn,~W., Pfisterer,~M., Schmid,~J., Sandhu,~S., Guppy,~K., Lee,~S., & Froelicher,~V. (1989). {it International application of a new probability algorithm for the diagnosis of coronary artery disease.} {it American Journal of Cardiology}, {it 64},304--310. -- International Probability Analysis -- Address: Robert Detrano, M.D. Cardiology 111-C V.A. Medical Center 5901 E. 7th Street Long Beach, CA 90028 -- Results in percent accuracy: (for 0.5 probability threshold) Data Name: CDF CADENZA -- Hungarian 77 74 Long beach 79 77 Swiss 81 81 -- Approximately a 77% correct classification accuracy with a logistic-regression-derived discriminant function
David W. Aha & Dennis Kibler --
-- Instance-based prediction of heart-disease presence with the Cleveland database -- NTgrowth: 77.0% accuracy -- C4: 74.8% accuracy
John Gennari -- Gennari, J.~H., Langley, P, & Fisher, D. (1989). Models of incremental concept formation. {it Artificial Intelligence, 40}, 11--61. -- Results: -- The CLASSIT conceptual clustering system achieved a 78.9% accuracy on the Cleveland database.
Relevant Information: This database contains 76 attributes, but all published experiments refer to using a subset of 14 of them. In particular, the Cleveland database is the only one that has been used by ML researchers to this date. The "goal" field refers to the presence of heart disease in the patient. It is integer valued from 0 (no presence) to 4. Experiments with the Cleveland database have concentrated on simply attempting to distinguish presence (values 1,2,3,4) from absence (value 0).
The names and social security numbers of the patients were recently removed from the database, replaced with dummy values.
One file has been "processed", that one containing the Cleveland database. All four unprocessed files also exist in this directory.
Number of Instances: Database: # of instances: Cleveland: 303 Hungarian: 294 Switzerland: 123 Long Beach VA: 200
Number of Attributes: 76 (including the predicted attribute)
Attribute Information: -- Only 14 used -- 1. #3 (age)
-- 2. #4 (sex)
-- 3. #9 (cp)
-- 4. #10 (trestbps)
-- 5. #12 (chol)
-- 6. #16 (fbs)
-- 7. #19 (restecg)
-- 8. #32 (thalach)
-- 9. #38 (exang)
-- 10. #40 (oldpeak)
-- 11. #41 (slope)
-- 12. #44 (ca)
-- 13. #51 (thal)
-- 14. #58 (num) (the predicted attribute)
-- Complete attribute documentation: 1 id: patient identification number 2 ccf: social security number (I replaced this with a dummy value of 0) 3 age: age in years 4 sex: sex (1 = male; 0 = female) 5 painloc: chest pain location (1 = substernal; 0 = otherwise) 6 painexer (1 = provoked by exertion; 0 = otherwise) 7 relrest (1 = relieved after rest; 0 = otherwise) 8 pncaden (sum of 5, 6, and 7) 9 cp: chest pain type -- Value 1: typical angina -- Value 2: atypical angina -- Value 3: non-anginal pain -- Value 4: asymptomatic 10 trestbps: resting blood pressure (in mm Hg on admission to the hospital) 11 htn 12 chol: serum cholestoral in mg/dl 13 smoke: I believe this is 1 = yes; 0 = no (is or is not a smoker) 14 cigs (cigarettes per day) 15 years (number of years as a smoker) 16 fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false) 17 dm (1 = history of diabetes; 0 = no such history) 18 famhist: family history of coronary artery disease (1 = yes; 0 = no) 19 restecg: resting electrocardiographic results -- Value 0: normal -- Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV) -- Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria 20 ekgmo (month of exercise ECG reading) 21 ekgday(day of exercise ECG reading) 22 ekgyr (year of exercise ECG reading) 23 dig (digitalis used furing exercise ECG: 1 = yes; 0 = no) 24 prop (Beta blocker used during exercise ECG: 1 = yes; 0 = no) 25 nitr (nitrates used during exercise ECG: 1 = yes; 0 = no) 26 pro (calcium channel blocker used during exercise ECG: 1 = yes; 0 = no) 27 diuretic (diuretic used used during exercise ECG: 1 = yes; 0 = no) 28 proto: exercise protocol 1 = Bruce
2 = Kottus 3 = McHenry 4 = fast Balke 5 = Balke 6 = Noughton 7 = bike 150 kpa min/min (Not sure if "kpa min/min" is what was written!) 8 = bike 125 kpa min/min
9 = bike 100 kpa min/min 10 = bike 75 kpa min/min 11 = bike 50 kpa min/min 12 = arm ergometer 29 thaldur: duration of exercise test in minutes 30 thaltime: time when ST measure depression was noted 31 met: mets achieved 32 thalach: maximum heart rate achieved 33 thalrest: resting heart rate 34 tpeakbps: peak exercise blood pressure (first of 2 parts) 35 tpeakbpd: peak exercise blood pressure (second of 2 parts) 36 dummy 37 trestbpd: resting blood pressure 38 exang: exercise induced angina (1 = yes; 0 = no) 39 xhypo: (1 = yes; 0 = no) 40 oldpeak = ST depression induced by exercise relative to rest 41 slope: the slope of the peak exercise ST segment -- Value 1: upsloping -- Value 2: flat -- Value 3: downsloping 42 rldv5: height at rest 43 rldv5e: height at peak exercise 44 ca: number of major vessels (0-3) colored by flourosopy 45 restckm: irrelevant 46 exerckm: irrelevant 47 restef: rest raidonuclid (sp?) ejection fraction 48 restwm: rest wall (sp?) motion abnormality 0 = none 1 = mild or moderate 2 = moderate or severe 3 = akinesis or dyskmem (sp?) 49 exeref: exercise radinalid (sp?) ejection fraction 50 exerwm: exercise wall (sp?) motion 51 thal: 3 = normal; 6 = fixed defect; 7 = reversable defect 52 thalsev: not used 53 thalpul: not used 54 earlobe: not used 55 cmo: month of cardiac cath (sp?) (perhaps "call") 56 cday: day of cardiac cath (sp?) 57 cyr: year of cardiac cath (sp?) 58 num: diagnosis of heart disease (angiographic disease status) -- Value 0: < 50% diameter narrowing -- Value 1: > 50% diameter narrowing (in any major vessel: attributes 59 through 68 are vessels) 59 lmt 60 ladprox 61 laddist 62 diag 63 cxmain 64 ramus 65 om1 66 om2 67 rcaprox 68 rcadist 69 lvx1: not used 70 lvx2: not used 71 lvx3: not used 72 lvx4: not used 73 lvf: not used 74 cathef: not used 75 junk: not used 76 name: last name of patient (I replaced this with the dummy string "name")Missing Attribute Values: Several. Distinguished with value -9.0.
Class Distribution: Database: 0 1 2 3 4 Total Cleveland: 164 55 36 35 13 303 Hungarian: 188 37 26 28 15 294 Switzerland: 8 48 32 30 5 123 Long Beach VA: 51 56 41 42 10 200
- Names
- age,sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,
- Types
- numeric
- nominal:0,1
- nominal:1,4,3,2
- numeric
- numeric
- nominal:1,0
- nominal:2,0,1
- numeric
- nominal:0,1
- numeric
- Data (first 10 data points)
age sex cp tres... chol fbs rest... thal... exang oldp... ... 63 1 1 145 233 1 2 150 0 2 ... 67 1 4 160 286 0 2 108 1 1 ... 67 1 4 120 229 0 2 129 1 2 ... 37 1 3 130 250 0 0 187 0 3 ... 41 0 2 130 204 0 2 172 0 1 ... 56 1 2 120 236 0 0 178 0 0 ... 62 0 4 140 268 0 2 160 0 3 ... 57 0 4 120 354 0 0 163 1 0 ... 63 1 4 130 254 0 2 147 0 1 ... 53 1 4 140 203 1 2 155 1 3 ... ... ... ... ... ... ... ... ... ... ... ...
- Description
A jarfile containing 37 regression problems, obtained from various sources (datasets-numeric.jar, 169,344 Bytes).
- URLs
- (No information yet)
- Publications
- Data Source
- Measurement Details
- Usage Scenario
- revision 1
- by mldata on 2010-11-06 09:57
No one has posted any comments yet. Perhaps you would like to be the first?
Leave a comment
To post a comment, please sign in.This item was downloaded 5135 times and viewed 3318 times.
No Tasks yet on dataset datasets-numeric cleveland
Submit a new Task for this Data itemData
- Public Archive
- Submit new Data
- Search
- Tag Cloud
Historical-Documents MIT all Yahoo! Translation plants econometrics Multiple Output libsvm Carcinoma recommendation supervised article jokes char b-cell compuational mhc HOG3D environmental entity large nervous computer-vision UQ immunohistochemistry Initiation skiing matrix robot genetic sweets qstar geostatistics stanford Named biology business book dlbcl jester earthquakes completion toy comparison Site nist Label-Sequence-Learning Weka diffuse TSS Scalar michigan biomedical websites LibSVMTools testbed pathology ranking bionlp handwritten_digits decision handwritten-digits abstracts contacts colon-cancer Structured-Output-Prediction multi-class slurped Kernel list Regression face bag-of-words Learning Renal sweetrs MKL history network-analytics making aml DMOZ point trn interpolation Biocreative multi-kernel start Harvard ratings Cell simulation-crashes corporate train conversion_failed Clear cluster video-frame-rate spatial collaborative-filtering statistics web-pages caltech finance NIH Wearable network system colinearity integer Activity-Recognition CRFs polya detection contempt Prediction database chemdner Voldemort temporal-series MLL VLC transfer-learning Supervised-Machine-Learning chemical cancer sensitivity-analysis action-recognition Leukemia character-recognition bioinformatics protein-fold-prediction process PubMed audio-buffer-rate lung categorization Transcription service-level-metrics b2b outcome ARTS ovarian jjjjjjjj Linux-kernel lymphoma climate-model company digits ensemble-learning nci arff prostate text Classification recognition Kannada financial Handwriting-Recognition test Kernels knist NER stjude letters Signal-processing Accelerometer big dataset Friedman-function GIS tree PUC-Rio video-on-demand ontario RTP-packet-rate change-point emnist time-series machine key-value IDA_Benchmark_Repository compounds UCB tumor
Sort by
Disclaimer
We are acting in good faith to make datasets submitted for the use of the scientific community available to everybody, but if you are a copyright holder and would like us to remove a dataset please inform us and we will do it as soon as possible.
Acknowledgements
This project is supported by PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning)
http://www.pascal-network.org/.